Syllabus
Math 4304L-510, 80040, Survey of Mathematical Ideas Lab

Fall 2020
Texas A&M University-Central Texas

COURSE DATES, MODALITY, AND LOCATION
This course is a web-enhanced course, and uses the A&M-Central Texas Canvas Learning Management System:
https://tamuct.instructure.com/
The course will be taught from Aug 24th, 2020 – Dec 11th, 2020.
The class will meet synchronously on Mondays from 5:00pm-5:45pm on the following dates:
August 24th 12pm-2pm
August 31st 12pm-2pm
September 28th 12pm-2pm
October 5th 12pm-2pm
October 12th 12pm-2pm
November 30th 12pm-2pm
December 7th 12pm-2pm

The synchronous meetings can be attended in person in Founders Hall Room 211 OR online over webex.
Click on this link:
https://tamuct.webex.com/join/dekock

INSTRUCTOR AND CONTACT INFORMATION
Instructor: Dr Mienie Roberts
Physical Office: Heritage Hall Room 302K
Virtual office: https://tamuct.webex.com/join/dekock
Phone: 903.705.9703
Email:
Preferred: Canvas Inbox
University Email: dekock@tamuct.edu

Office Hours
Instructor’s office hours:
Face-to-face office hours in HH Room 302K:
August 24th 12pm-2pm
August 31st 12pm-2pm
September 28th 12pm-2pm
October 5th 12pm-2pm
October 12th 12pm-2pm
November 30th 12pm-2pm
December 7th 12pm-2pm

Online office hours:
Click on webex link: \url{https://tamuct.webex.com/join/dekock}
August 24th 12pm-2pm
August 31st 12pm-2pm
September 14th 12pm-2pm
September 21st 12pm-2pm
September 28th 12pm-2pm
October 5th 12pm-2pm
October 12th 12pm-2pm

And every Wednesday from 12pm-2pm.
Student can also schedule an appointment.

\textbf{Graduate assistant’s office hours:}
\textbf{Online office hours:}
Tuesdays and Thursdays from 9am-11am.

\textbf{Student-instructor interaction}
I will check messages once a day on the CANVAS inbox system and reply within 24 hours.
Students are expected to check their CANVAS email and announcements on a daily basis.

\textbf{WARRIOR SHIELD}
\textbf{Emergency Warning System for Texas A&M University-Central Texas}
Warrior Shield is an emergency notification service that gives Texas A&M University-Central Texas the ability to communicate health and safety emergency information quickly via email, text message, and social media. All students are automatically enrolled in Warrior Shield through their myCT email account.

Connect to Warrior Shield by \url{911Cellular} [https://portal.publicsafetycloud.net/Account/Login] to change where you receive your alerts or to opt out. By staying enrolled in Warrior Shield, university officials can quickly pass on safety-related information, regardless of your location.
COVID-19 SAFETY MEASURES

To promote public safety and protect students, faculty, and staff during the coronavirus pandemic, Texas A&M University-Central Texas has adopted policies and practices to minimize virus transmission. All members of the university community are expected to adhere to these measures to ensure their own safety and the safety of others. Students must observe the following practices while participating in face-to-face courses, course-related activities (office hours, help sessions, transitioning to and between classes, study spaces, academic services, etc.) and co-curricular programs:

- **Self-monitoring**—Students should follow CDC recommendations for self-monitoring. Students who have a fever or exhibit symptoms of COVID-19 should participate in class remotely and should not participate in face-to-face instruction. Students required to quarantine must participate in courses and course-related activities remotely and must not attend face-to-face course activities. Students should notify their instructors of the quarantine requirement. Students under quarantine are expected to participate in courses and complete graded work unless they have symptoms that are too severe to participate in course activities.

- **Face Coverings**—Face coverings must be worn inside of buildings and within 50 feet of building entrances on the A&M-Central Texas Campus. This includes lobbies, restrooms, hallways, elevators, classrooms, laboratories, conference rooms, break rooms, non-private office spaces, and other shared spaces. Face coverings are also required in outdoor spaces where physical distancing is not maintained. The university will evaluate exceptions to this requirement on a case by case basis. Students can request an exception through the Office of Access and Inclusion in Student Affairs.

 o If a student refuses to wear a face covering, the instructor should ask the student to leave and join the class remotely. If the student does not leave the class, the faculty member should report that student to the Office of Student Conduct. Additionally, the faculty member may choose to teach that day’s class remotely for all students.

- **Physical Distancing**—Physical distancing must be maintained between students, instructors, and others in the course and course-related activities.

- **Classroom Ingress/Egress**—Students must follow marked pathways for entering and exiting classrooms and other teaching spaces. Leave classrooms promptly after course activities have concluded. Do not congregate in hallways and maintain 6-foot physical distancing when waiting to enter classrooms and other instructional spaces.

- The university will notify students in the event that the COVID-19 situation necessitates changes to the course schedule or modality.
COURSE INFORMATION

Course Overview and description

Course Objective or Goal
Student Learning Outcomes:

This course is intended for prospective teachers who want to review key concepts, principles and strategies for teaching mathematics in 7-12 classrooms. The course is aligned with the Mathematics 7-12 Texas educator standards/frameworks and serves as preparation for taking the TExES certification examination. During the lab portion of the course, students will work through old certification exams. Prerequisites: Math 120 and Math 402 or concurrent enrollment.

Competency Goals Statements (certification or standards)

Course Objectives:

Students will become thoroughly proficient in the following areas:

- Demonstrate understanding of number concepts, including the real number system and complex number system. (Covered in all assignments)
- Demonstrate understanding of patterns and Algebra being able to solve problems and formulate conjectures. Understands attributes of functions, relations, and their graphs. Understands trigonometric and circular functions and uses them to solve problems. (Covered in all assignments)
- Demonstrate understanding of mathematical reasoning and problem solving and how to communicate mathematical ideas and concepts. (Covered in all assignments)
- Demonstrate understanding of geometry (Euclidean) and measurement. (Covered on Midterm, Final, and Discussion 1)
- Demonstrate understanding of probability and statistics, including how to use appropriate graphical and numerical techniques to explore data, characterize patterns, and describe departures from patterns. Understand concepts and applications of probability. (Covered on Midterm, Final, and Discussion 2)
- Demonstrate understanding of mathematical learning, including how children learn mathematics and plans, organizes, and implements instruction using knowledge of students, subject matter, and statewide curriculum (Covered on all assignments)
- Use software to explain abstract mathematical concepts via virtual manipulatives and animations. (Covered on discussions)

Students will satisfy the Texas competencies and standards as outlined below by the Texas Education Agency:
TExES competencies and standards:

The Standards

Mathematics 7–12 Standard I
Number Concepts: The mathematics teacher understands and uses numbers, number systems and their structure, operations and algorithms, quantitative reasoning and technology appropriate to teach the statewide curriculum (Texas Essential Knowledge and Skills [TEKS]) to prepare students to use mathematics.

Mathematics 7–12 Standard II
Patterns and Algebra: The mathematics teacher understands and uses patterns, relations, functions, algebraic reasoning, analysis and technology appropriate to teach the statewide curriculum (TEKS) to prepare students to use mathematics.

Mathematics 7–12 Standard III
Geometry and Measurement: The mathematics teacher understands and uses geometry, spatial reasoning, measurement concepts and principles and technology appropriate to teach the statewide curriculum (TEKS) to prepare students to use mathematics.

Mathematics 7–12 Standard IV
Probability and Statistics: The mathematics teacher understands and uses probability and statistics, their applications and technology appropriate to teach the statewide curriculum (TEKS) to prepare students to use mathematics.

Mathematics 7–12 Standard V
Mathematical Processes: The mathematics teacher understands and uses mathematical processes to reason mathematically, to solve mathematical problems, to make mathematical connections within and outside of mathematics and to communicate mathematically.

Mathematics 7–12 Standard VI
Mathematical Perspectives: The mathematics teacher understands the historical development of mathematical ideas, the relationship between society and mathematics, the structure of mathematics and the evolving nature of mathematics and mathematical knowledge.

Mathematics 7–12 Standard VII
Mathematical Learning and Instruction: The mathematics teacher understands how children learn and develop mathematical skills, procedures and concepts; knows typical errors students make; and uses this knowledge to plan, organize and implement instruction to meet curriculum goals and to teach all students to understand and use mathematics.
Competencies:

Domain I — Number Concepts

Competency 001: The teacher understands the real number system and its structure, operations, algorithms and representations.

The beginning teacher:

A. Understands the concepts of place value, number base and decimal representations of real numbers.

B. Understands the algebraic structure and properties of the real number system and its subsets (e.g., real numbers as a field, integers as an additive group).

C. Describes and analyzes properties of subsets of the real numbers (e.g., closure, identities).

D. Selects and uses appropriate representations of real numbers (e.g., fractions, decimals, percents, roots, exponents, scientific notation) for particular situations.

E. Uses a variety of models (e.g., geometric, symbolic) to represent operations, algorithms and real numbers.

F. Uses real numbers to model and solve a variety of problems.

G. Uses deductive reasoning to simplify and justify algebraic processes.

H. Demonstrates how some problems that have no solution in the integer or rational number systems have solutions in the real number system.
Competency 002: *The teacher understands the complex number system and its structure, operations, algorithms and representations.*

The beginning teacher:

A. Demonstrates how some problems that have no solution in the real number system have solutions in the complex number system.

B. Understands the properties of complex numbers (e.g., complex conjugate, magnitude/m modulus, multiplicative inverse).

C. Understands the algebraic structure of the complex number system and its subsets (e.g., complex numbers as a field, complex addition as vector addition).

D. Selects and uses appropriate representations of complex numbers (e.g., vector, ordered pair, polar, exponential) for particular situations.

E. Describes complex number operations (e.g., addition, multiplication, roots) using symbolic and geometric representations.

Competency 003: *The teacher understands number theory concepts and principles and uses numbers to model and solve problems in a variety of situations.*

The beginning teacher:

A. Applies ideas from number theory (e.g., prime numbers and factorization, the Euclidean algorithm, divisibility, congruence classes, modular arithmetic, the fundamental theorem of arithmetic) to solve problems.

B. Applies number theory concepts and principles to justify and prove number relationships.

C. Compares and contrasts properties of vectors and matrices with properties of number systems (e.g., existence of inverses, non-commutative operations).

D. Uses properties of numbers (e.g., fractions, decimals, percents, ratios, proportions) to model and solve real-world problems.

E. Applies counting techniques such as permutations and combinations to quantify situations and solve problems.

F. Uses estimation techniques to solve problems and judges the reasonableness of solutions.
Competency 004: The teacher uses patterns to model and solve problems and formulate conjectures.

The beginning teacher:

A. Recognizes and extends patterns and relationships in data presented in tables, sequences or graphs.
B. Uses methods of recursion and iteration to model and solve problems.
C. Uses the principle of mathematical induction.
D. Analyzes the properties of sequences and series (e.g., Fibonacci, arithmetic, geometric) and uses them to solve problems involving finite and infinite processes.
E. Understands how sequences and series are applied to solve problems in the mathematics of finance (e.g., simple, compound and continuous interest rates; annuities).

Competency 005: The teacher understands attributes of functions, relations and their graphs.

The beginning teacher:

A. Understands when a relation is a function.
B. Identifies the mathematical domain and range of functions and relations and determines reasonable domains for given situations.
C. Understands that a function represents a dependence of one quantity on another and can be represented in a variety of ways (e.g., concrete models, tables, graphs, diagrams, verbal descriptions, symbols).
D. Identifies and analyzes even and odd functions, one-to-one functions, inverse functions and their graphs.
E. Applies basic transformations [e.g., $k f(x)$, $f(x) + k$, $f(x - k)$, $f(kx)$, $|f(x)|$] to a parent function, f, and describes the effects on the graph of $y = f(x)$.
F. Performs operations (e.g., sum, difference, composition) on functions, finds inverse relations and describes results symbolically and graphically.
G. Uses graphs of functions to formulate conjectures of identities [e.g., $y = x^2 - 1$ and $y = (x - 1)(x + 1)$, $y = \log x^3$ and $y = 3 \log x$, $y = \sin(x + \frac{\pi}{2})$ and $y = \cos x$].
Competency 006: The teacher understands linear and quadratic functions, analyzes their algebraic and graphical properties and uses them to model and solve problems.

The beginning teacher:

A. Understands the concept of slope as a rate of change and interprets the meaning of slope and intercept in a variety of situations.

B. Writes equations of lines given various characteristics (e.g., two points, a point and slope, slope and y-intercept).

C. Applies techniques of linear and matrix algebra to represent and solve problems involving linear systems.

D. Analyzes the zeros (real and complex) of quadratic functions.

E. Makes connections between the $y = ax^2 + bx + c$ and the $y = a(x - h)^2 + k$ representations of a quadratic function and its graph.

F. Solves problems involving quadratic functions using a variety of methods (e.g., factoring, completing the square, using the quadratic formula, using a graphing calculator).

G. Models and solves problems involving linear and quadratic equations and inequalities using a variety of methods, including technology.
Competency 007: The teacher understands polynomial, rational, radical, absolute value and piecewise functions, analyzes their algebraic and graphical properties and uses them to model and solve problems.

The beginning teacher:

A. Recognizes and translates among various representations (e.g., written, tabular, graphical, algebraic) of polynomial, rational, radical, absolute value and piecewise functions.

B. Describes restrictions on the domains and ranges of polynomial, rational, radical, absolute value and piecewise functions.

C. Makes and uses connections among the significant points (e.g., zeros, local extrema, points where a function is not continuous or not differentiable) of a function, the graph of the function and the function’s symbolic representation.

D. Analyzes functions in terms of vertical, horizontal and slant asymptotes.

E. Analyzes and applies the relationship between inverse variation and rational functions.

F. Solves equations and inequalities involving polynomial, rational, radical, absolute value and piecewise functions using a variety of methods (e.g., tables, algebraic methods, graphs, use of a graphing calculator) and evaluates the reasonableness of solutions.

G. Models situations using polynomial, rational, radical, absolute value and piecewise functions and solves problems using a variety of methods, including technology.
Competency 008: The teacher understands exponential and logarithmic functions, analyses their algebraic and graphical properties and uses them to model and solve problems.

The beginning teacher:

A. Recognizes and translates among various representations (e.g., written, numerical, tabular, graphical, algebraic) of exponential and logarithmic functions.

B. Recognizes and uses connections among significant characteristics (e.g., intercepts, asymptotes) of a function involving exponential or logarithmic expressions, the graph of the function and the function's symbolic representation.

C. Understands the relationship between exponential and logarithmic functions and uses the laws and properties of exponents and logarithms to simplify expressions and solve problems.

D. Uses a variety of representations and techniques (e.g., numerical methods, tables, graphs, analytic techniques, graphing calculators) to solve equations, inequalities and systems involving exponential and logarithmic functions.

E. Models and solves problems involving exponential growth and decay.

F. Uses logarithmic scales (e.g., Richter, decibel) to describe phenomena and solve problems.

G. Uses exponential and logarithmic functions to model and solve problems involving the mathematics of finance (e.g., compound interest).

H. Uses the exponential function to model situations and solve problems in which the rate of change of a quantity is proportional to the current amount of the quantity [i.e., \(f'(x) = kf(x) \)].
Competency 009: The teacher understands trigonometric and circular functions, analyzes their algebraic and graphical properties and uses them to model and solve problems.

The beginning teacher:

A. Analyzes the relationships among the unit circle in the coordinate plane, circular functions and the trigonometric functions.
B. Recognizes and translates among various representations (e.g., written, numerical, tabular, graphical, algebraic) of trigonometric functions and their inverses.
C. Recognizes and uses connections among significant properties (e.g., zeros, axes of symmetry, local extrema) and characteristics (e.g., amplitude, frequency, phase shift) of a trigonometric function, the graph of the function and the function’s symbolic representation.
D. Understands the relationships between trigonometric functions and their inverses and uses these relationships to solve problems.
E. Uses trigonometric identities to simplify expressions and solve equations.
F. Models and solves a variety of problems (e.g., analyzing periodic phenomena) using trigonometric functions.
G. Uses graphing calculators to analyze and solve problems involving trigonometric functions.

Competency 010: The teacher understands and solves problems using differential and integral calculus.

The beginning teacher:

A. Understands the concept of limit and the relationship between limits and continuity.
B. Relates the concept of average rate of change to the slope of the secant line and relates the concept of instantaneous rate of change to the slope of the tangent line.
C. Uses the first and second derivatives to analyze the graph of a function (e.g., local extrema, concavity, points of inflection).
D. Understands and applies the fundamental theorem of calculus and the relationship between differentiation and integration.
E. Models and solves a variety of problems (e.g., velocity, acceleration, optimization, related rates, work, center of mass) using differential and integral calculus.
F. Analyzes how technology can be used to solve problems and illustrate concepts involving differential and integral calculus.
Domain III — Geometry and Measurement

Competency 011: *The teacher understands measurement as a process.*

The beginning teacher:

A. Applies dimensional analysis to derive units and formulas in a variety of situations (e.g., rates of change of one variable with respect to another) and to find and evaluate solutions to problems.

B. Applies formulas for perimeter, area, surface area and volume of geometric figures and shapes (e.g., polygons, pyramids, prisms, cylinders, cones, spheres) to solve problems.

C. Recognizes the effects on length, area or volume when the linear dimensions of plane figures or solids are changed.

D. Applies the Pythagorean theorem, proportional reasoning and right triangle trigonometry to solve measurement problems.

E. Relates the concept of area under a curve to the limit of a Riemann sum.

F. Uses integral calculus to compute various measurements associated with curves and regions (e.g., area, arc length) in the plane, and measurements associated with curves, surfaces and regions in three-space.

Competency 012: *The teacher understands geometries, in particular Euclidian geometry, as axiomatic systems.*

The beginning teacher:

A. Understands axiomatic systems and their components (e.g., undefined terms, defined terms, theorems, examples, counterexamples).

B. Uses properties of points, lines, planes, angles, lengths and distances to solve problems.

C. Applies the properties of parallel and perpendicular lines to solve problems.

D. Uses properties of congruence and similarity to explore geometric relationships, justify conjectures and prove theorems.

E. Describes and justifies geometric constructions made using compass and straightedge, reflection devices and other appropriate technologies.

F. Demonstrates an understanding of the use of appropriate software to explore attributes of geometric figures and to make and evaluate conjectures about geometric relationships.

G. Compares and contrasts the axioms of Euclidean geometry with those of non-Euclidean geometry (i.e., hyperbolic and elliptic geometry).
Competency 013: The teacher understands the results, uses and applications of Euclidian geometry.

The beginning teacher:

A. Analyzes the properties of polygons and their components.
B. Analyzes the properties of circles and the lines that intersect them.
C. Uses geometric patterns and properties (e.g., similarity, congruence) to make generalizations about two- and three-dimensional figures and shapes (e.g., relationships of sides, angles).
D. Computes the perimeter, area and volume of figures and shapes created by subdividing and combining other figures and shapes (e.g., arc length, area of sectors).
E. Analyzes cross-sections and nets of three-dimensional shapes.
F. Uses top, front, side and corner views of three-dimensional shapes to create complete representations and solve problems.
G. Applies properties of two- and three-dimensional shapes to solve problems across the curriculum and in everyday life.

Competency 014: The teacher understands coordinate, transformational and vector geometry and their connections.

The beginning teacher:

A. Identifies transformations (i.e., reflections, translations, glide-reflections, rotations, dilations) and explores their properties.
B. Uses the properties of transformations and their compositions to solve problems.
C. Uses transformations to explore and describe reflectional, rotational and translational symmetry.
D. Applies transformations in the coordinate plane.
E. Applies concepts and properties of slope, midpoint, parallelism, perpendicularity and distance to explore properties of geometric figures and solve problems in the coordinate plane.
F. Uses coordinate geometry to derive and explore the equations, properties and applications of conic sections (i.e., lines, circles, hyperbolas, ellipses, parabolas).
G. Relates geometry and algebra by representing transformations as matrices and uses this relationship to solve problems.
H. Explores the relationship between geometric and algebraic representations of vectors and uses this relationship to solve problems.
Competency 015: *The teacher understands how to use appropriate graphical and numerical techniques to explore data, characterize patterns and describe departures from patterns.*

The beginning teacher:

A. Selects and uses an appropriate measurement scale (i.e., nominal, ordinal, interval, ratio) to answer research questions and analyze data.

B. Organizes, displays and interprets data in a variety of formats (e.g., tables, frequency distributions, scatter plots, stem-and-leaf plots, box-and-whisker plots, histograms, pie charts).

C. Applies concepts of center, spread, shape and skewness to describe a data distribution.

D. Understands measures of central tendency (i.e., mean, median, mode) and dispersion (i.e., range, interquartile range, variance, standard deviation).

E. Applies linear transformations (i.e., translating, stretching, shrinking) to convert data and describes the effect of linear transformations on measures of central tendency and dispersion.

F. Analyzes connections among concepts of center and spread, data clusters and gaps, data outliers and measures of central tendency and dispersion.

G. Supports arguments, makes predictions and draws conclusions using summary statistics and graphs to analyze and interpret one-variable data.

Competency 016: *The teacher understands concepts and applications of probability.*

The beginning teacher:

A. Understands how to explore concepts of probability through sampling, experiments and simulations and generates and uses probability models to represent situations.

B. Uses the concepts and principles of probability to describe the outcomes of simple and compound events.

C. Determines probabilities by constructing sample spaces to model situations.

D. Solves a variety of probability problems using combinations and permutations.

E. Solves a variety of probability problems using ratios of areas of geometric regions.

F. Calculates probabilities using the axioms of probability and related theorems and concepts such as the addition rule, multiplication rule, conditional probability and independence.
G. Understands expected value, variance and standard deviation of probability distributions (e.g., binomial, geometric, uniform, normal).

H. Applies concepts and properties of discrete and continuous random variables to model and solve a variety of problems involving probability and probability distributions (e.g., binomial, geometric, uniform, normal).

Competency 017: The teacher understands the relationships among probability theory, sampling and statistical inference and how statistical inference is used in making and evaluating predictions.

The beginning teacher:

A. Applies knowledge of designing, conducting, analyzing and interpreting statistical experiments to investigate real-world problems.

B. Analyzes and interprets statistical information (e.g., the results of polls and surveys) and recognizes misleading as well as valid uses of statistics.

C. Understands random samples and sample statistics (e.g., the relationship between sample size and confidence intervals, biased or unbiased estimators).

D. Makes inferences about a population using binomial, normal and geometric distributions.

E. Describes and analyzes bivariate data using various techniques (e.g., scatterplots, regression lines, outliers, residual analysis, correlation coefficients).

F. Understands how to transform nonlinear data into linear form to apply linear regression techniques to develop exponential, logarithmic and power regression models.

G. Uses the law of large numbers and the central limit theorem in the process of statistical inference.

H. Estimates parameters (e.g., population mean and variance) using point estimators (e.g., sample mean and variance).

I. Understands principles of hypotheses testing.
Competency 018: The teacher understands mathematical reasoning and problem solving.

The beginning teacher:

A. Understands the nature of proof, including indirect proof, in mathematics.
B. Applies correct mathematical reasoning to derive valid conclusions from a set of premises.
C. Uses inductive reasoning to make conjectures and uses deductive methods to evaluate the validity of conjectures.
D. Uses formal and informal reasoning to justify mathematical ideas.
E. Understands the problem-solving process (i.e., recognizing that a mathematical problem can be solved in a variety of ways, selecting an appropriate strategy, evaluating the reasonableness of a solution).
F. Evaluates how well a mathematical model represents a real-world situation.

Competency 019: The teacher understands mathematical connections both within and outside of mathematics and how to communicate mathematical ideas and concepts.

The beginning teacher:

A. Recognizes and uses multiple representations of a mathematical concept (e.g., a point and its coordinates, the area of a circle as a quadratic function of the radius, probability as the ratio of two areas, area of a plane region as a definite integral).
B. Understands how mathematics is used to model and solve problems in other disciplines (e.g., art, music, science, social science, business).
C. Translates mathematical ideas between verbal and symbolic forms.
D. Communicates mathematical ideas using a variety of representations (e.g., numeric, verbal, graphical, pictorial, symbolic, concrete).
E. Understands the use of visual media, such as graphs, tables, diagrams and animations, to communicate mathematical information.
F. Uses appropriate mathematical terminology to express mathematical ideas.
Competency 020: The teacher understands how children learn mathematics and plans, organizes and implements instruction using knowledge of students, subject matter and statewide curriculum (Texas Essential Knowledge and Skills [TEKS]).

The beginning teacher:

A. Applies research-based theories of learning mathematics to plan appropriate instructional activities for all students.
B. Understands how students differ in their approaches to learning mathematics.
C. Uses students’ prior mathematical knowledge to build conceptual links to new knowledge and plans instruction that builds on students’ strengths and addresses students’ needs.
D. Understands how learning may be enhanced through the use of manipulatives, technology and other tools (e.g., stop watches, rulers).
E. Understands how to provide instruction along a continuum from concrete to abstract.
F. Understands a variety of instructional strategies and tasks that promote students’ abilities to do the mathematics described in the TEKS.
G. Understands how to create a learning environment that provides all students, including English-language learners, with opportunities to develop and improve mathematical skills and procedures.
H. Understands a variety of questioning strategies to encourage mathematical discourse and to help students analyze and evaluate their mathematical thinking.
I. Understands how to relate mathematics to students’ lives and to a variety of careers and professions.

Competency 021: The teacher understands assessment and uses a variety of formal and informal assessment techniques to monitor and guide mathematics instruction and to evaluate student progress.

The beginning teacher:

A. Understands the purpose, characteristics and uses of various assessments in mathematics, including formative and summative assessments.
B. Understands how to select and develop assessments that are consistent with what is taught and how it is taught.
Required Reading and Textbook(s)

Required Reading and Textbook(s):

The student needs will be provided with credentials to practice exams on www.examedge.com

COURSE REQUIREMENTS

Grading Criteria Rubric and Conversion

The student will be required to complete 5 labs on the examedge website.

<table>
<thead>
<tr>
<th>Lab</th>
<th>Questions</th>
<th>Points</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab 1</td>
<td>1-20</td>
<td>20</td>
<td>20%</td>
</tr>
<tr>
<td>Lab 2</td>
<td>21-40</td>
<td>20</td>
<td>20%</td>
</tr>
<tr>
<td>Lab 3</td>
<td>41-60</td>
<td>20</td>
<td>20%</td>
</tr>
<tr>
<td>Lab 4</td>
<td>61-80</td>
<td>20</td>
<td>20%</td>
</tr>
<tr>
<td>Lab 5</td>
<td>81-100</td>
<td>20</td>
<td>20%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>(1000 points)</td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

Posting of Grades

Students will receive immediate feedback on grades on examedge for the labs.

Grading Policies

NO LATE ASSIGNMENTS WILL BE ACCEPTED IN THIS CLASS.

All grades will be posted to the gradebook on mymathlab. Please keep track of your “Overall score” and let me know if there are any mistakes.

It is the student’s responsibility to log into the Canvas LMS on a daily basis and to monitor the “Announcements”.

The Midterm and Final exams are proctored exams and the student is allowed 1 attempt at the exams.

The Quizzes are available on mymathlab and are not proctored exams. Students have 3 attempts at the quizzes and the highest score will be used as the grade for the quiz.
Students have infinitely many attempts available on the homework assignments.

COURSE OUTLINE AND CALENDAR

Complete Course Calendar

| Week 1 | Aug 24th
Synchronous meeting from 5pm-5:45pm
Cover syllabus and weekly schedule	Aug 25th	Aug 26th	Aug 27th
Week 2	Aug 31st		
Synchronous meeting from 5pm-5:45pm	Sep 1st	Sep 2nd	Sep 3rd
Week 3	Sep 7th		
Labor Day			
No class	Sep 8th	Sep 9th	Sep 10th
Week 4	Sep 14th	Sep 15th	Sep 16th
Week 5	Sep 21st	Sep 22nd	Sep 23rd
Week 6	Sep 28th		
Synchronous meeting from 5pm-5:45pm	Sep 29th	Sep 30th	Oct 1st
Week 7	Oct 5th		
Synchronous meeting for Practice
Midterm/Review | Oct 6th | Oct 7th | Oct 8th |
<table>
<thead>
<tr>
<th>Week 8</th>
<th>Oct 12th Synchronous meeting for Proctored and Comprehensive Midterm exam</th>
<th>Oct 13th</th>
<th>Oct 14th</th>
<th>Oct 15th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 9</td>
<td>Oct 19th</td>
<td>Oct 20th</td>
<td>Oct 21st</td>
<td>Oct 22nd</td>
</tr>
<tr>
<td>Week 10</td>
<td>Oct 26th Lab 1 due</td>
<td>Oct 27th</td>
<td>Oct 28th</td>
<td>Oct 29th</td>
</tr>
<tr>
<td>Week 11</td>
<td>Nov 2nd Lab 2 due</td>
<td>Nov 3rd</td>
<td>Nov 4th</td>
<td>Nov 5th</td>
</tr>
<tr>
<td>Week 12</td>
<td>Nov 9th Lab 3 due</td>
<td>Nov 10th</td>
<td>Nov 11th</td>
<td>Nov 12th</td>
</tr>
<tr>
<td>Week 13</td>
<td>Nov 16th Lab 4 due</td>
<td>Nov 17th</td>
<td>Nov 18th</td>
<td>Nov 20th</td>
</tr>
<tr>
<td>Week 14</td>
<td>Nov 23rd Presentation 1 due</td>
<td>Nov 24th</td>
<td>Nov 25th</td>
<td>Nov 26th Thanksgiving</td>
</tr>
<tr>
<td>Week 15</td>
<td>Nov 30th Synchronous meeting Lab 5 due Review for final</td>
<td>Dec 1st</td>
<td>Dec 2nd</td>
<td>Dec 3rd</td>
</tr>
<tr>
<td>Week 16</td>
<td>Dec 7th Synchronous meeting for Proctored and comprehensive Final exam (Chapters 1-12)</td>
<td>Dec 8th</td>
<td>Dec 9th</td>
<td>Dec 10th</td>
</tr>
</tbody>
</table>

Important University Dates
TECHNOLOGY REQUIREMENTS AND SUPPORT

Technology Requirements

This course will use the A&M-Central Texas Instructure Canvas learning management system. We strongly recommend the latest versions of Chrome or Firefox browsers. Canvas no longer supports any version of Internet Explorer.

Logon to A&M-Central Texas Canvas [https://tamuct.instructure.com/] or access Canvas through the TAMUCT Online link in myCT [https://tamuct.onecampus.com/]. You will log in through our Microsoft portal.

Username: Your MyCT email address. Password: Your MyCT password
Canvas Support
Use the Canvas Help link, located at the bottom of the left-hand menu, for issues with Canvas. You can select “Chat with Canvas Support,” submit a support request through “Report a Problem,” or call the Canvas support line: 1-844-757-0953.

For issues related to course content and requirements, contact your instructor.

ALL online synchronous meetings and office hours will be held on webex. Please click on this link to access my office hours or synchronous meetings:

https://tamuct.webex.com/join/dekock

The labs, midterm, and final exam can be accesses on the examedge website:

www.examedge.com

Online Proctored Testing
The midterm and final exams are proctored exams.
A&M-Central Texas uses Proctorio for online identity verification and proctored testing. This service is provided at no direct cost to students. This course requires identity verification and proctored testing, the technology requirements are: Any computer meeting the minimum computing requirements, plus web camera, speaker, and microphone (or headset). Proctorio also requires the Chrome web browser with their custom plug in.

Other Technology Support
For log-in problems, students should contact Help Desk Central

24 hours a day, 7 days a week
Email: helpdesk@tamu.edu
Phone: (254) 519-5466
Web Chat: [http://hdc.tamu.edu]
Please let the support technician know you are an A&M-Central Texas student.

UNIVERSITY RESOURCES, PROCEDURES, AND GUIDELINES

Drop Policy
If you discover that you need to drop this class, you must complete the Drop Request Dynamic Form through Warrior Web.
Faculty cannot drop students; this is always the responsibility of the student. The Registrar’s Office will provide a deadline on the Academic Calendar for which the form must be completed. Once you submit the completed form to the Registrar’s Office, you must go into Warrior Web and confirm that you are no longer enrolled. If you still show as enrolled, FOLLOW-UP with the Registrar’s Office immediately. You are to attend class until the procedure is complete to avoid penalty for absence. Should you miss the drop deadline or fail to follow the procedure, you will receive an F in the course, which may affect your financial aid and/or VA educational benefits.

Academic Integrity

Texas A&M University -Central Texas values the integrity of the academic enterprise and strives for the highest standards of academic conduct. A&M-Central Texas expects its students, faculty, and staff to support the adherence to high standards of personal and scholarly conduct to preserve the honor and integrity of the creative community. Academic integrity is defined as a commitment to honesty, trust, fairness, respect, and responsibility. Any deviation by students from this expectation may result in a failing grade for the assignment and potentially a failing grade for the course. Academic misconduct is any act that improperly affects a true and honest evaluation of a student’s academic performance and includes, but is not limited to, working with others in an unauthorized manner, cheating on an examination or other academic work, plagiarism and improper citation of sources, using another student’s work, collusion, and the abuse of resource materials. All academic misconduct concerns will be referred to the university’s Office of Student Conduct. Ignorance of the university’s standards and expectations is never an excuse to act with a lack of integrity. When in doubt on collaboration, citation, or any issue, please contact your instructor before taking a course of action.

For more information regarding the Student Conduct process, [https://www.tamuct.edu/student-affairs/student-conduct.html]. If you know of potential honor violations by other students, you may submit a report, [https://cm.maxient.com/reportingform.php?TAMUCentralTexas&layout_id=0].

Academic Accommodations

At Texas A&M University-Central Texas, we value an inclusive learning environment where every student has an equal chance to succeed and has the right to a barrier-free education. The Office of Access and Inclusion is responsible for ensuring that students with a disability receive equal access to the university’s programs, services and activities. If you believe you have a disability requiring reasonable accommodations please contact the Office of Access and Inclusion, WH-212; or call (254) 501-5836. Any information you provide is private and confidential and will be treated as such.
For more information please visit our [Access & Inclusion Canvas page (log-in required)](https://tamuct.instructure.com/courses/717)

Important information for Pregnant and/or Parenting Students

Texas A&M University-Central Texas supports students who are pregnant and/or parenting. In accordance with requirements of Title IX and related guidance from US Department of Education’s Office of Civil Rights, the Dean of Student Affairs’ Office can assist students who are pregnant and/or parenting in seeking accommodations related to pregnancy and/or parenting. Students should seek out assistance as early in the pregnancy as possible. For more information, please visit [Student Affairs](https://www.tamuct.edu/student-affairs/index.html). Students may also contact the institution’s Title IX Coordinator. If you would like to read more about these requirements and guidelines online, please visit the website http://www2.ed.gov/about/offices/list/ocr/docs/pregnancy.pdf.

Title IX of the Education Amendments Act of 1972 prohibits discrimination on the basis of sex and gender—including pregnancy, parenting, and all related conditions. A&M-Central Texas is able to provide flexible and individualized reasonable accommodation to pregnant and parenting students. All pregnant and parenting students should contact the Associate Dean in the Division of Student Affairs at (254) 501-5909 to seek out assistance. Students may also contact the University’s Title IX Coordinator.

Tutoring

Tutoring is available to all A&M-Central Texas students, on a remote online basis. Visit the Academic Support Community in Canvas to view schedules and contact information. Subjects tutored on campus include Accounting, Advanced Math, Biology, Finance, Statistics, Mathematics, and Study Skills. Tutors will return at the Tutoring Center in Warrior Hall, Suite 111 in the Fall 2020. Student success coaching is available online upon request.

If you have a question regarding tutor schedules, need to schedule a tutoring session, are interested in becoming a tutor, success coaching, or have any other question, contact Academic Support Programs at (254) 501-5836, visit the Office of Student Success at 212F Warrior Hall, or by emailing studentsuccess@tamuct.edu.

Chat live with a tutor 24/7 for almost any subject from on your computer! Tutor.com is an online tutoring platform that enables A&M-Central Texas students to log in and receive online tutoring support at no additional cost. This tool provides tutoring in over 40 subject areas except writing support. Access Tutor.com through Canvas.

University Writing Center

The University Writing Center (UWC) at Texas A&M University–Central Texas (TAMUCT) is a free
service open to all TAMUCT students. For the Fall 2020 semester, all services will be online as a result of the COVID-19 pandemic. The hours of operation are from 10:00 a.m.-5:00 p.m. Monday thru Thursday with satellite hours online Monday thru Thursday from 6:00-9:00 p.m. The UWC is also offering hours from 12:00-3:00 p.m. on Saturdays.

Tutors are prepared to help writers of all levels and abilities at any stage of the writing process. By providing a practice audience for students’ ideas and writing, our tutors highlight the ways in which they read and interpret students’ texts, offering guidance and support throughout the various stages of the writing process. While tutors will not write, edit, or grade papers, they will assist students in developing more effective composing practices. Whether you need help brainstorming ideas, organizing an essay, proofreading, understanding proper citation practices, or just want a quiet place to work, the UWC is here to help!

Students may arrange a one-to-one session with a trained and experienced writing tutor by making an appointment via WCOnline [https://tamuct.mywconline.com/]. In addition, you can email Dr. Bruce Bowles Jr. at bruce.bowles@tamuct.edu if you have any questions about the UWC and/or need any assistance with scheduling.

University Library

The University Library provides many services in support of research across campus and at a distance. We offer over 200 electronic databases containing approximately 250,000 eBooks and 82,000 journals, in addition to the 85,000 items in our print collection, which can be mailed to students who live more than 50 miles from campus. Research guides for each subject taught at A&M-Central Texas are available through our website to help students navigate these resources. On campus, the library offers technology including cameras, laptops, microphones, webcams, and digital sound recorders.

Research assistance from a librarian is also available 24 hours a day through our online chat service, and at the reference desk when the library is open. Research sessions can be scheduled for more comprehensive assistance, and may take place on Skype or in-person at the library. Assistance may cover many topics, including how to find articles in peer-reviewed journals, how to cite resources, and how to piece together research for written assignments.

Our 27,000-square-foot facility on the A&M-Central Texas main campus includes student lounges, private study rooms, group work spaces, computer labs, family areas suitable for all ages, and many other features. Services such as interlibrary loan, TexShare, binding, and laminating are available. The library frequently offers workshops, tours, readings, and other events. For more information, please visit our Library website [http://tamuct.libguides.com/index].

For Fall 2020, all reference service will be conducted virtually. Please go to our Library website [http://tamuct.libguides.com/index] to access our virtual reference help and our current hours.
OPTIONAL POLICY STATEMENTS

A Note about Sexual Violence at A&M-Central Texas

Sexual violence is a serious safety, social justice, and public health issue. The university offers support for anyone struggling with these issues. University faculty are mandated reporters, so if someone discloses that they were sexually assaulted (or a victim of Domestic/Dating Violence or Stalking) while a student at TAMUCT, faculty members are required to inform the Title IX Office. If you want to discuss any of these issues confidentially, you can do so through Student Counseling (254-501-5955) located on the second floor of Warrior Hall (207L).

Sexual violence can occur on our campus because predators often feel emboldened, and victims often feel silenced or shamed. It is incumbent on ALL of us to find ways to actively create environments that tell predators we don’t agree with their behaviors and tell survivors we will support them. Your actions matter. Don’t be a bystander; be an agent of change. For additional information on campus policy and resources visit the [Title IX webpage](https://www.tamuct.edu/compliance/titleix.html).

Behavioral Intervention

Texas A&M University-Central Texas cares about the safety, health, and well-being of its students, faculty, staff, and community. If you are aware of individuals for whom you have a concern, please make a referral to the Behavioral Intervention Team. Referring your concern shows you care. You can complete the referral online [https://cm.maxient.com/reportingform.php?TAMUCentralTexas&layout_id=2].

Anonymous referrals are accepted. Please see the Behavioral Intervention Team website for more information [https://www.tamuct.edu/student-affairs/bat.html]. If a person’s behavior poses an imminent threat to you or another, contact 911 or A&M-Central Texas University Police at 254-501-5800.

OTHER POLICIES

Copyright Notice

Students should assume that all course material is copyrighted by the respective author(s). Reproduction of course material is prohibited without consent by the author and/or course instructor. Violation of copyright is against the law and Texas A&M University-Central Texas’ Code of Academic Honesty. All alleged violations will be reported to the Office of Student Conduct.

Copyright. (2020) by (Dr. Mienie Roberts) at Texas A&M University-Central Texas, (College of Arts and Sciences); 1001 Leadership Place, Killeen, TX 76549; 903-705-9703; dekock@tamuct.edu