INSTRUCTOR AND CONTACT INFORMATION
Instructor: Dr. Mienie Roberts
Office: WH 420M
Phone: 903.705.9703
Email: Please use the CANVAS inbox for all correspondence related to the course. My university email address is: dekock@tamuct.edu

Office Hours:
Face-to-face in Room WH 420M:
Mondays: 12pm-2pm, Wednesdays 12pm-2pm

Online:
Webex (Let me know if I need to send a link to your email):
Skype:
mienie123
Google Hangouts:
mienie.dekock@gmail.com

Time:
Mondays: 12pm-2pm, Wednesdays 12pm-2pm

Or by appointment.

Mathematics Graduate Assistant office hours:
The graduate assistant will be available in person in WH 420N
Face-to-face: Tuesdays, Thursdays: 1pm-3pm

And online via:
Google hangouts:
katncentx@gmail.com

Skype:
Mode of instruction and course access:
This is a blended course. Most classes will be online, except for the midterm review and the final review which will be face-to-face. Also, the midterm and final exams will be proctored exams. The rest of the face-to-face classes will be indicated on the weekly schedule.

This course uses the A&M-Central Texas Canvas Learning Management System [https://tamuct.instructure.com/].

And mymathlab:

http://www.mymathlab.com/

Please log into the following test preparation website for access to lab:

http://www.texesprep.com/Math/?gclid=Cj0KCQjw24nNBRCARlslALdL0W-h5-4nvGXVI_TA6diY7sgO71nPpwRe7DXhdLeDBp0eXcR6DS8EaAvoiEALw_wcB

Credentials will be provided in private emails. Please email dekock@tamuct.edu for the credentials.

Student-instructor interaction:

The instructor will check her emails on a daily basis. Feedback will be given within 24 hours. Office hours will be held over Webex and students are encouraged to click on the link that will be sent out over Canvas announcements.

911 Cellular:
Emergency Warning System for Texas A&M University-Central Texas
911Cellular is an emergency notification service that gives Texas A&M University-Central Texas the ability to communicate health and safety emergency information quickly via email, text message, and social media. All students are automatically enrolled in 911Cellular through their myCT email account.
COURSE INFORMATION

Course Overview and description:

This course is intended for prospective teachers who want to review key concepts, principles and strategies for teaching mathematics in 7-12 classrooms. It is aligned with the Mathematics 7-12 Texas educator standards/frameworks and serves as preparation for taking the TExES certification examination.

Prerequisites: Math 120 and Math 402 or concurrent enrollment.

Course Objectives:

Students will become thoroughly proficient in the following areas:

- Demonstrate understanding of number concepts, including the real number system and complex number system.
- Demonstrate understanding of patterns and Algebra being able to solve problems and formulate conjectures. Understands attributes of functions, relations, and their graphs. Understands trigonometric and circular functions and uses them to solve problems.
- Demonstrate understanding of mathematical reasoning and problem solving and how to communicate mathematical ideas and concepts.
- Demonstrate understanding of geometry (Euclidean) and measurement.
- Demonstrate understanding of probability and statistics, including how to use appropriate graphical and numerical techniques to explore data, characterize patterns, and describe departures from patterns. Understand concepts and applications of probability.
- Demonstrate understanding of mathematical learning, including how children learn mathematics and plans, organizes, and implements instruction using knowledge of students, subject matter, and statewide curriculum
- Use software to explain abstract mathematical concepts via virtual manipulatives and animations.

Course Objective:

Student Learning Outcomes:

Competency Goals Statements (certification or standards):

TExES competencies and standards: Competencies:
The Standards

Mathematics 7–12 Standard I
Number Concepts: The mathematics teacher understands and uses numbers, number systems and their structure, operations and algorithms, quantitative reasoning and technology appropriate to teach the statewide curriculum (Texas Essential Knowledge and Skills [TEKS]) to prepare students to use mathematics.

Mathematics 7–12 Standard II
Patterns and Algebra: The mathematics teacher understands and uses patterns, relations, functions, algebraic reasoning, analysis and technology appropriate to teach the statewide curriculum (TEKS) to prepare students to use mathematics.

Mathematics 7–12 Standard III
Geometry and Measurement: The mathematics teacher understands and uses geometry, spatial reasoning, measurement concepts and principles and technology appropriate to teach the statewide curriculum (TEKS) to prepare students to use mathematics.

Mathematics 7–12 Standard IV
Probability and Statistics: The mathematics teacher understands and uses probability and statistics, their applications and technology appropriate to teach the statewide curriculum (TEKS) to prepare students to use mathematics.

Mathematics 7–12 Standard V
Mathematical Processes: The mathematics teacher understands and uses mathematical processes to reason mathematically, to solve mathematical problems, to make mathematical connections within and outside of mathematics and to communicate mathematically.

Mathematics 7–12 Standard VI
Mathematical Perspectives: The mathematics teacher understands the historical development of mathematical ideas, the relationship between society and mathematics, the structure of mathematics and the evolving nature of mathematics and mathematical knowledge.

Mathematics 7–12 Standard VII
Mathematical Learning and Instruction: The mathematics teacher understands how children learn and develop mathematical skills, procedures and concepts; knows typical errors students make; and uses this knowledge to plan, organize and implement instruction to meet curriculum goals and to teach all students to understand and use mathematics.
Competencies:

Domain I — Number Concepts

Competency 001: The teacher understands the real number system and its structure, operations, algorithms and representations.

The beginning teacher:

A. Understands the concepts of place value, number base and decimal representations of real numbers.

B. Understands the algebraic structure and properties of the real number system and its subsets (e.g., real numbers as a field, integers as an additive group).

C. Describes and analyzes properties of subsets of the real numbers (e.g., closure, identities).

D. Selects and uses appropriate representations of real numbers (e.g., fractions, decimals, percents, roots, exponents, scientific notation) for particular situations.

E. Uses a variety of models (e.g., geometric, symbolic) to represent operations, algorithms and real numbers.

F. Uses real numbers to model and solve a variety of problems.

G. Uses deductive reasoning to simplify and justify algebraic processes.

H. Demonstrates how some problems that have no solution in the integer or rational number systems have solutions in the real number system.
Competency 002: The teacher understands the complex number system and its structure, operations, algorithms and representations.

The beginning teacher:

A. Demonstrates how some problems that have no solution in the real number system have solutions in the complex number system.

B. Understands the properties of complex numbers (e.g., complex conjugate, magnitude/modulus, multiplicative inverse).

C. Understands the algebraic structure of the complex number system and its subsets (e.g., complex numbers as a field, complex addition as vector addition).

D. Selects and uses appropriate representations of complex numbers (e.g., vector, ordered pair, polar, exponential) for particular situations.

E. Describes complex number operations (e.g., addition, multiplication, roots) using symbolic and geometric representations.

Competency 003: The teacher understands number theory concepts and principles and uses numbers to model and solve problems in a variety of situations.

The beginning teacher:

A. Applies ideas from number theory (e.g., prime numbers and factorization, the Euclidean algorithm, divisibility, congruence classes, modular arithmetic, the fundamental theorem of arithmetic) to solve problems.

B. Applies number theory concepts and principles to justify and prove number relationships.

C. Compares and contrasts properties of vectors and matrices with properties of number systems (e.g., existence of inverses, non-commutative operations).

D. Uses properties of numbers (e.g., fractions, decimals, percents, ratios, proportions) to model and solve real-world problems.

E. Applies counting techniques such as permutations and combinations to quantify situations and solve problems.

F. Uses estimation techniques to solve problems and judges the reasonableness of solutions.
Competency 004: The teacher uses patterns to model and solve problems and formulate conjectures.

The beginning teacher:

A. Recognizes and extends patterns and relationships in data presented in tables, sequences or graphs.
B. Uses methods of recursion and iteration to model and solve problems.
C. Uses the principle of mathematical induction.
D. Analyzes the properties of sequences and series (e.g., Fibonacci, arithmetic, geometric) and uses them to solve problems involving finite and infinite processes.
E. Understands how sequences and series are applied to solve problems in the mathematics of finance (e.g., simple, compound and continuous interest rates; annuities).

Competency 005: The teacher understands attributes of functions, relations and their graphs.

The beginning teacher:

A. Understands when a relation is a function.
B. Identifies the mathematical domain and range of functions and relations and determines reasonable domains for given situations.
C. Understands that a function represents a dependence of one quantity on another and can be represented in a variety of ways (e.g., concrete models, tables, graphs, diagrams, verbal descriptions, symbols).
D. Identifies and analyzes even and odd functions, one-to-one functions, inverse functions and their graphs.
E. Applies basic transformations [e.g., \(k f(x), f(x) + k, f(x - k), f(kx), |f(x)| \)] to a parent function, \(f \), and describes the effects on the graph of \(y = f(x) \).
F. Performs operations (e.g., sum, difference, composition) on functions, finds inverse relations and describes results symbolically and graphically.
G. Uses graphs of functions to formulate conjectures of identities [e.g., \(y = x^2 - 1 \) and \(y = (x - 1)(x + 1) \), \(y = \log x^3 \) and \(y = 3 \log x \), \(y = \sin(x + \frac{3}{2}) \) and \(y = \cos x \)].
Competency 006: The teacher understands linear and quadratic functions, analyzes their algebraic and graphical properties and uses them to model and solve problems.

The beginning teacher:

A. Understands the concept of slope as a rate of change and interprets the meaning of slope and intercept in a variety of situations.
B. Writes equations of lines given various characteristics (e.g., two points, a point and slope, slope and y-intercept).
C. Applies techniques of linear and matrix algebra to represent and solve problems involving linear systems.
D. Analyzes the zeros (real and complex) of quadratic functions.
E. Makes connections between the \(y = ax^2 + bx + c \) and the \(y = a(x - h)^2 + k \) representations of a quadratic function and its graph.
F. Solves problems involving quadratic functions using a variety of methods (e.g., factoring, completing the square, using the quadratic formula, using a graphing calculator).
G. Models and solves problems involving linear and quadratic equations and inequalities using a variety of methods, including technology.
Competency 007: The teacher understands polynomial, rational, radical, absolute value and piecewise functions, analyzes their algebraic and graphical properties and uses them to model and solve problems.

The beginning teacher:

A. Recognizes and translates among various representations (e.g., written, tabular, graphical, algebraic) of polynomial, rational, radical, absolute value and piecewise functions.

B. Describes restrictions on the domains and ranges of polynomial, rational, radical, absolute value and piecewise functions.

C. Makes and uses connections among the significant points (e.g., zeros, local extrema, points where a function is not continuous or not differentiable) of a function, the graph of the function and the function's symbolic representation.

D. Analyzes functions in terms of vertical, horizontal and slant asymptotes.

E. Analyzes and applies the relationship between inverse variation and rational functions.

F. Solves equations and inequalities involving polynomial, rational, radical, absolute value and piecewise functions using a variety of methods (e.g., tables, algebraic methods, graphs, use of a graphing calculator) and evaluates the reasonableness of solutions.

G. Models situations using polynomial, rational, radical, absolute value and piecewise functions and solves problems using a variety of methods, including technology.
Competency 008: The teacher understands exponential and logarithmic functions, analyses their algebraic and graphical properties and uses them to model and solve problems.

The beginning teacher:

A. Recognizes and translates among various representations (e.g., written, numerical, tabular, graphical, algebraic) of exponential and logarithmic functions.

B. Recognizes and uses connections among significant characteristics (e.g., intercepts, asymptotes) of a function involving exponential or logarithmic expressions, the graph of the function and the function’s symbolic representation.

C. Understands the relationship between exponential and logarithmic functions and uses the laws and properties of exponents and logarithms to simplify expressions and solve problems.

D. Uses a variety of representations and techniques (e.g., numerical methods, tables, graphs, analytic techniques, graphing calculators) to solve equations, inequalities and systems involving exponential and logarithmic functions.

E. Models and solves problems involving exponential growth and decay.

F. Uses logarithmic scales (e.g., Richter, decibel) to describe phenomena and solve problems.

G. Uses exponential and logarithmic functions to model and solve problems involving the mathematics of finance (e.g., compound interest).

H. Uses the exponential function to model situations and solve problems in which the rate of change of a quantity is proportional to the current amount of the quantity [i.e., \(f'(x) = kf(x) \)].
Competency 009: The teacher understands trigonometric and circular functions, analyzes their algebraic and graphical properties and uses them to model and solve problems.

The beginning teacher:

A. Analyzes the relationships among the unit circle in the coordinate plane, circular functions and the trigonometric functions.

B. Recognizes and translates among various representations (e.g., written, numerical, tabular, graphical, algebraic) of trigonometric functions and their inverses.

C. Recognizes and uses connections among significant properties (e.g., zeros, axes of symmetry, local extrema) and characteristics (e.g., amplitude, frequency, phase shift) of a trigonometric function, the graph of the function and the function's symbolic representation.

D. Understands the relationships between trigonometric functions and their inverses and uses these relationships to solve problems.

E. Uses trigonometric identities to simplify expressions and solve equations.

F. Models and solves a variety of problems (e.g., analyzing periodic phenomena) using trigonometric functions.

G. Uses graphing calculators to analyze and solve problems involving trigonometric functions.

Competency 010: The teacher understands and solves problems using differential and integral calculus.

The beginning teacher:

A. Understands the concept of limit and the relationship between limits and continuity.

B. Relates the concept of average rate of change to the slope of the secant line and relates the concept of instantaneous rate of change to the slope of the tangent line.

C. Uses the first and second derivatives to analyze the graph of a function (e.g., local extrema, concavity, points of inflection).

D. Understands and applies the fundamental theorem of calculus and the relationship between differentiation and integration.

E. Models and solves a variety of problems (e.g., velocity, acceleration, optimization, related rates, work, center of mass) using differential and integral calculus.

F. Analyzes how technology can be used to solve problems and illustrate concepts involving differential and integral calculus.
Domain III — Geometry and Measurement

Competency 011: The teacher understands measurement as a process.

The beginning teacher:

A. Applies dimensional analysis to derive units and formulas in a variety of situations (e.g., rates of change of one variable with respect to another) and to find and evaluate solutions to problems.

B. Applies formulas for perimeter, area, surface area and volume of geometric figures and shapes (e.g., polygons, pyramids, prisms, cylinders, cones, spheres) to solve problems.

C. Recognizes the effects on length, area or volume when the linear dimensions of plane figures or solids are changed.

D. Applies the Pythagorean theorem, proportional reasoning and right triangle trigonometry to solve measurement problems.

E. Relates the concept of area under a curve to the limit of a Riemann sum.

F. Uses integral calculus to compute various measurements associated with curves and regions (e.g., area, arc length) in the plane, and measurements associated with curves, surfaces and regions in three-space.

Competency 012: The teacher understands geometries, in particular Euclidian geometry, as axiomatic systems.

The beginning teacher:

A. Understands axiomatic systems and their components (e.g., undefined terms, defined terms, theorems, examples, counterexamples).

B. Uses properties of points, lines, planes, angles, lengths and distances to solve problems.

C. Applies the properties of parallel and perpendicular lines to solve problems.

D. Uses properties of congruence and similarity to explore geometric relationships, justify conjectures and prove theorems.

E. Describes and justifies geometric constructions made using compass and straightedge, reflection devices and other appropriate technologies.

F. Demonstrates an understanding of the use of appropriate software to explore attributes of geometric figures and to make and evaluate conjectures about geometric relationships.

G. Compares and contrasts the axioms of Euclidean geometry with those of non-Euclidean geometry (i.e., hyperbolic and elliptic geometry).
Competency 013: The teacher understands the results, uses and applications of Euclidian geometry.

The beginning teacher:

A. Analyzes the properties of polygons and their components.
B. Analyzes the properties of circles and the lines that intersect them.
C. Uses geometric patterns and properties (e.g., similarity, congruence) to make generalizations about two- and three-dimensional figures and shapes (e.g., relationships of sides, angles).
D. Computes the perimeter, area and volume of figures and shapes created by subdividing and combining other figures and shapes (e.g., arc length, area of sectors).
E. Analyzes cross-sections and nets of three-dimensional shapes.
F. Uses top, front, side and corner views of three-dimensional shapes to create complete representations and solve problems.
G. Applies properties of two- and three-dimensional shapes to solve problems across the curriculum and in everyday life.

Competency 014: The teacher understands coordinate, transformational and vector geometry and their connections.

The beginning teacher:

A. Identifies transformations (i.e., reflections, translations, glide-reflections, rotations, dilations) and explores their properties.
B. Uses the properties of transformations and their compositions to solve problems.
C. Uses transformations to explore and describe reflectional, rotational and translational symmetry.
D. Applies transformations in the coordinate plane.
E. Applies concepts and properties of slope, midpoint, parallelism, perpendicularity and distance to explore properties of geometric figures and solve problems in the coordinate plane.
F. Uses coordinate geometry to derive and explore the equations, properties and applications of conic sections (i.e., lines, circles, hyperbolas, ellipses, parabolas).
G. Relates geometry and algebra by representing transformations as matrices and uses this relationship to solve problems.
H. Explores the relationship between geometric and algebraic representations of vectors and uses this relationship to solve problems.
Competency 015: *The teacher understands how to use appropriate graphical and numerical techniques to explore data, characterize patterns and describe departures from patterns.*

The beginning teacher:

A. Selects and uses an appropriate measurement scale (i.e., nominal, ordinal, interval, ratio) to answer research questions and analyze data.

B. Organizes, displays and interprets data in a variety of formats (e.g., tables, frequency distributions, scatter plots, stem-and-leaf plots, box-and-whisker plots, histograms, pie charts).

C. Applies concepts of center, spread, shape and skewness to describe a data distribution.

D. Understands measures of central tendency (i.e., mean, median, mode) and dispersion (i.e., range, interquartile range, variance, standard deviation).

E. Applies linear transformations (i.e., translating, stretching, shrinking) to convert data and describes the effect of linear transformations on measures of central tendency and dispersion.

F. Analyzes connections among concepts of center and spread, data clusters and gaps, data outliers and measures of central tendency and dispersion.

G. Supports arguments, makes predictions and draws conclusions using summary statistics and graphs to analyze and interpret one-variable data.

Competency 016: *The teacher understands concepts and applications of probability.*

The beginning teacher:

A. Understands how to explore concepts of probability through sampling, experiments and simulations and generates and uses probability models to represent situations.

B. Uses the concepts and principles of probability to describe the outcomes of simple and compound events.

C. Determines probabilities by constructing sample spaces to model situations.

D. Solves a variety of probability problems using combinations and permutations.

E. Solves a variety of probability problems using ratios of areas of geometric regions.

F. Calculates probabilities using the axioms of probability and related theorems and concepts such as the addition rule, multiplication rule, conditional probability and independence.
G. Understands expected value, variance and standard deviation of probability distributions (e.g., binomial, geometric, uniform, normal).

H. Applies concepts and properties of discrete and continuous random variables to model and solve a variety of problems involving probability and probability distributions (e.g., binomial, geometric, uniform, normal).

Competency 017: The teacher understands the relationships among probability theory, sampling and statistical inference and how statistical inference is used in making and evaluating predictions.

The beginning teacher:

A. Applies knowledge of designing, conducting, analyzing and interpreting statistical experiments to investigate real-world problems.

B. Analyzes and interprets statistical information (e.g., the results of polls and surveys) and recognizes misleading as well as valid uses of statistics.

C. Understands random samples and sample statistics (e.g., the relationship between sample size and confidence intervals, biased or unbiased estimators).

D. Makes inferences about a population using binomial, normal and geometric distributions.

E. Describes and analyzes bivariate data using various techniques (e.g., scatterplots, regression lines, outliers, residual analysis, correlation coefficients).

F. Understands how to transform nonlinear data into linear form to apply linear regression techniques to develop exponential, logarithmic and power regression models.

G. Uses the law of large numbers and the central limit theorem in the process of statistical inference.

H. Estimates parameters (e.g., population mean and variance) using point estimators (e.g., sample mean and variance).

I. Understands principles of hypotheses testing.
Competency 018: The teacher understands mathematical reasoning and problem solving.

The beginning teacher:

A. Understands the nature of proof, including indirect proof, in mathematics.
B. Applies correct mathematical reasoning to derive valid conclusions from a set of premises.
C. Uses inductive reasoning to make conjectures and uses deductive methods to evaluate the validity of conjectures.
D. Uses formal and informal reasoning to justify mathematical ideas.
E. Understands the problem-solving process (i.e., recognizing that a mathematical problem can be solved in a variety of ways, selecting an appropriate strategy, evaluating the reasonableness of a solution).
F. Evaluates how well a mathematical model represents a real-world situation.

Competency 019: The teacher understands mathematical connections both within and outside of mathematics and how to communicate mathematical ideas and concepts.

The beginning teacher:

A. Recognizes and uses multiple representations of a mathematical concept (e.g., a point and its coordinates, the area of a circle as a quadratic function of the radius, probability as the ratio of two areas, area of a plane region as a definite integral).
B. Understands how mathematics is used to model and solve problems in other disciplines (e.g., art, music, science, social science, business).
C. Translates mathematical ideas between verbal and symbolic forms.
D. Communicates mathematical ideas using a variety of representations (e.g., numeric, verbal, graphical, pictorial, symbolic, concrete).
E. Understands the use of visual media, such as graphs, tables, diagrams and animations, to communicate mathematical information.
F. Uses appropriate mathematical terminology to express mathematical ideas.
Competency 020: **The teacher understands how children learn mathematics and plans, organizes and implements instruction using knowledge of students, subject matter and statewide curriculum (Texas Essential Knowledge and Skills [TEKS]).**

The beginning teacher:

A. Applies research-based theories of learning mathematics to plan appropriate instructional activities for all students.

B. Understands how students differ in their approaches to learning mathematics.

C. Uses students’ prior mathematical knowledge to build conceptual links to new knowledge and plans instruction that builds on students’ strengths and addresses students’ needs.

D. Understands how learning may be enhanced through the use of manipulatives, technology and other tools (e.g., stop watches, rulers).

E. Understands how to provide instruction along a continuum from concrete to abstract.

F. Understands a variety of instructional strategies and tasks that promote students’ abilities to do the mathematics described in the TEKS.

G. Understands how to create a learning environment that provides all students, including English-language learners, with opportunities to develop and improve mathematical skills and procedures.

H. Understands a variety of questioning strategies to encourage mathematical discourse and to help students analyze and evaluate their mathematical thinking.

I. Understands how to relate mathematics to students’ lives and to a variety of careers and professions.

Competency 021: **The teacher understands assessment and uses a variety of formal and informal assessment techniques to monitor and guide mathematics instruction and to evaluate student progress.**

The beginning teacher:

A. Understands the purpose, characteristics and uses of various assessments in mathematics, including formative and summative assessments.

B. Understands how to select and develop assessments that are consistent with what is taught and how it is taught.
Required Reading and Textbook(s):

The student does not have to purchase a hard copy of the book for this class, instead make sure to purchase an access code to mymathlab. All tests and homework assignments will be available on mymathlab.
Student Registration Instructions

To register for Math 4304:

2. Under Register, select Student.
3. Confirm you have the information needed, then select OK! Register now.
4. Enter your instructor’s course ID: roberts40668, and Continue.
5. Enter your existing Pearson account username and password to Sign In.
 You have an account if you have ever used a MyLab or Mastering product.
 » If you don’t have an account, select Create and complete the required fields.
6. Select an access option.
 » Enter the access code that came with your textbook or that you purchased separately from the bookstore.
 » If available for your course, • Buy access using a credit card or PayPal.
 • Get temporary access.
7. From the You’re Done! page, select Go To My Courses.
8. On the My Courses page, select the course name Math 4304 to start your work.

To sign in later:
2. Select Sign In.
3. Enter your Pearson account username and password, and Sign In.
4. Select the course name Math 4304 to start your work.

To upgrade temporary access to full access:
2. Select Sign In.
3. Enter your Pearson account username and password, and Sign In.
4. Select Upgrade access for Math 4304.
5. Enter an access code or buy access with a credit card or PayPal.

Copyright © 2018 Pearson All Rights Reserved.
COURSE REQUIREMENTS

The student will be responsible for homework assignments, 2 tests, a midterm and a final exam. The student will also be responsible for 5 online discussions and 1 project. Both the midterm and final exams are proctored.

Grading Criteria Rubric and Conversion

<table>
<thead>
<tr>
<th></th>
<th>Points</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>100</td>
<td>10%</td>
</tr>
<tr>
<td>Tests (2x50)</td>
<td>100</td>
<td>10%</td>
</tr>
<tr>
<td>Midterm</td>
<td>300</td>
<td>30%</td>
</tr>
<tr>
<td>Final</td>
<td>300</td>
<td>30%</td>
</tr>
<tr>
<td>Online discussions (5x10)</td>
<td>50</td>
<td>5%</td>
</tr>
<tr>
<td>Project</td>
<td>50</td>
<td>5%</td>
</tr>
<tr>
<td>Lab</td>
<td>100</td>
<td>10%</td>
</tr>
</tbody>
</table>

Total. (1000 points) 100%

Posting of Grades
Student will receive instant feedback on progress on mymathlab. Please navigate to “gradebook” for grades.

COURSE OUTLINE AND CALENDAR
Complete Course Calendar

<table>
<thead>
<tr>
<th>Week 1</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aug 27</td>
<td>Aug 28</td>
<td>Aug 29</td>
<td>Aug 30</td>
</tr>
<tr>
<td></td>
<td>Face-to-face meeting Chapter 1</td>
<td>Face-to-face meeting Chapter 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lab: Do Questions 1-10 of assigned test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 2</td>
<td>Sep 3</td>
<td>Sep 4</td>
<td>Sep 5</td>
<td>Sep 6</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>Labor day</td>
<td>No class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 3</td>
<td>Sep 10</td>
<td>Sep 11</td>
<td>Sep 12</td>
<td>Sep 13</td>
</tr>
<tr>
<td></td>
<td>Homework on Chapters 1-3 due</td>
<td></td>
<td>Test 1 on Chapters 1-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lab: Do Questions 11-20 of assigned test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 4</td>
<td>Sep 17</td>
<td>Sep 18</td>
<td>Sep 19</td>
<td>Sep 20</td>
</tr>
<tr>
<td></td>
<td>Watch lecture videos on Chapters 4, 5 and 6</td>
<td></td>
<td>Homework on Chapters 4, 5 and 6 due</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lab: Do Questions 21-30 of assigned test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 5</td>
<td>Sep 24</td>
<td>Sep 25</td>
<td>Sep 26</td>
<td>Sep 27</td>
</tr>
<tr>
<td></td>
<td>Face-to-face review session for Midterm</td>
<td></td>
<td>Face-to-face Proctored Midterm on Chapters 1-6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lab: Do Questions 31-40 of assigned test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 6</td>
<td>Oct 1</td>
<td>Oct 2</td>
<td>Oct 3</td>
<td>Oct 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 7</td>
<td>Oct 8</td>
<td>Oct 9</td>
<td>Oct 10</td>
<td>Oct 11</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Watch the lecture videos on Chapters 10, 11, 12, 13</td>
<td>Online discussion 2 due</td>
<td>Project due</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Online discussion 3 due</td>
<td>Lab: Do Questions 51-60 of assigned test</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week 8</th>
<th>Oct 15</th>
<th>Oct 16</th>
<th>Oct 17</th>
<th>Oct 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face-to-face review session for Final exam</td>
<td>Online discussion 4 due</td>
<td>Face-to-face Final exam</td>
<td>Online discussion 5 due</td>
<td></td>
</tr>
</tbody>
</table>
Important University Dates:
<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 25, 2017</td>
<td>Fall Semester Admissions Application Opens</td>
</tr>
<tr>
<td>March 15, 2018</td>
<td>Priority Deadline for Federal Application for Financial Aid (FAFSA)</td>
</tr>
<tr>
<td>March 19, 2018</td>
<td>Advising Begins for Fall and Summer Semesters</td>
</tr>
<tr>
<td>March 19, 2018</td>
<td>Class Schedule Published For Fall Semester</td>
</tr>
<tr>
<td>April 2, 2018</td>
<td>Registration Opens for Fall Semester</td>
</tr>
<tr>
<td>June 28, 2018</td>
<td>Priority Deadline for International Student Admissions Applications</td>
</tr>
<tr>
<td>July 16, 2018</td>
<td>Priority Deadline for VA Certification Request</td>
</tr>
<tr>
<td>July 20, 2018</td>
<td>Deadline for Scholarship Applications for the Fall Semester</td>
</tr>
<tr>
<td>August 11, 2018</td>
<td>10am Commencement at Bell County Expo Center</td>
</tr>
<tr>
<td>August 13, 2018</td>
<td>Classes Begin for Minimester</td>
</tr>
<tr>
<td>August 13, 2018</td>
<td>Priority Deadline for Admissions Applications</td>
</tr>
<tr>
<td>August 24, 2018</td>
<td>Classes End for Minimester</td>
</tr>
<tr>
<td>Date</td>
<td>Event</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>August 24, 2018</td>
<td>Deadline for Tuition and Fee Payments (16- & First 8-Week Classes)</td>
</tr>
<tr>
<td>August 27, 2018</td>
<td>Add, Drop, and Late Registration Begins for 16- and First 8-Week Classes. $25 fee assessed for late registrants.</td>
</tr>
<tr>
<td>August 27, 2018</td>
<td>Classes Begin for Fall Semester</td>
</tr>
<tr>
<td>August 29, 2018</td>
<td>Deadline for Add, Drop, and Late Registration for 16- and First 8-Week Classes</td>
</tr>
<tr>
<td>September 3, 2018</td>
<td>Labor Day</td>
</tr>
<tr>
<td>September 4, 2018</td>
<td>Deadline to Drop First 8-Week Classes with No Record</td>
</tr>
<tr>
<td>September 12, 2018</td>
<td>Deadline to drop 16-Week Classes with No Record</td>
</tr>
<tr>
<td>October 1, 2018</td>
<td>Deadline for Teacher Education and Professional Certification Applications (i.e. Principal, Reading Specialist, etc.)</td>
</tr>
<tr>
<td>October 5, 2018</td>
<td>Deadline to Drop First 8-Week Classes with a Quit (Q) or Withdraw (W)</td>
</tr>
<tr>
<td>October 5, 2018</td>
<td>Deadline for Graduation Application for Ceremony Participation</td>
</tr>
<tr>
<td>October 5, 2018</td>
<td>Student End of Course Survey Opens (First 8-Week Classes)</td>
</tr>
<tr>
<td>October 12, 2018</td>
<td>Deadline for Fall Admissions Applications</td>
</tr>
<tr>
<td>October 15, 2018</td>
<td>Deadline for Clinical Teaching Applications</td>
</tr>
<tr>
<td>Date</td>
<td>Event</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>October 19, 2018</td>
<td>Classes End for First 8-Week Session</td>
</tr>
<tr>
<td>October 19, 2018</td>
<td>Deadline for Tuition and Fee Payments (Second 8-Week Classes)</td>
</tr>
<tr>
<td>October 19, 2018</td>
<td>Deadline to Withdraw from University for First 8-Week Classes (WF)</td>
</tr>
<tr>
<td>October 22, 2018</td>
<td>Add, Drop, and Late Registration Begins for Second 8-Week Classes. $25 fee assessed for late registrants</td>
</tr>
<tr>
<td>October 22, 2018</td>
<td>Classes Begin for Second 8-Week Session</td>
</tr>
<tr>
<td>October 22, 2018</td>
<td>Student End of Course Survey Closes (First 8-Week Classes)</td>
</tr>
<tr>
<td>October 23, 2018</td>
<td>Deadline for Faculty Submission of First 8-Week Class Final Grades (due by 3pm)</td>
</tr>
<tr>
<td>October 24, 2018</td>
<td>Deadline for Add, Drop, and Late Registration for Second 8-Week Classes</td>
</tr>
<tr>
<td>October 29, 2018</td>
<td>Deadline to Drop Second 8-Week Classes with No Record</td>
</tr>
<tr>
<td>November 1, 2018</td>
<td>Deadline for GRE/GMAT Scores to Office of Graduate Studies</td>
</tr>
<tr>
<td>November 9, 2018</td>
<td>Deadline to Drop 16-Week Classes with a Quit (Q) or Withdraw (W)</td>
</tr>
<tr>
<td>November 12, 2018</td>
<td>Veterans Day (Observed) - No Class</td>
</tr>
<tr>
<td>November 16, 2018</td>
<td>Deadline for Final Committee-Edited Theses with Committee Approval</td>
</tr>
<tr>
<td></td>
<td>Signatures to Office of Graduate Studies for Fall Semester</td>
</tr>
</tbody>
</table>
TECHNOLOGY REQUIREMENTS AND SUPPORT

Technology Requirements
This course will use the A&M-Central Texas Instructure Canvas learning management system. Logon to A&M-Central Texas Canvas [https://tamuct.instructure.com/].

Username: Your MyCT username (xx123 or everything before the "@" in your MyCT e-mail address)
Password: Your MyCT password

Canvas Support
Use the Canvas Help link, located at the bottom of the left-hand menu, for issues with Canvas. You can select “Chat with Canvas Support,” submit a support request through “Report a Problem,” or call the Canvas support line: 1-844-757-0953.
For issues related to course content and requirements, contact your instructor.

Other Technology Support
For log-in problems, students should contact Help Desk Central.
24 hours a day, 7 days a week:
 Email: helpdesk@tamu.edu
 Phone: (254) 519-5466
 Web Chat: [http://hdc.tamu.edu]

Please let the support technician know you are an A&M-Central Texas student.

The course will also use mymathlab:

Purchase an access code to mymathlab at:

www.mymathlab.com

Student will also be required to utilize video conferencing software (skype/webex/google hangouts) for tutoring/office hours.

Student should also have access to MS Excel for completion of the project.

The mathematics graduate assistant will be able to assist with all technical questions. Her name is:
Kat Weiss
WH Room 420N

Google hangouts:
katncentx@gmail.com

Skype:
kw027@my.tamuct.edu

UNIVERSITY RESOURCES, PROCEDURES, AND GUIDELINES

Drop Policy.
If you discover that you need to drop this class, you must complete a Drop Request Form [https://www.tamuct.edu/registrar/docs/Drop_Request_Form.pdf].

Professors cannot drop students; this is always the responsibility of the student. The Registrar’s Office will provide a deadline on the Academic Calendar for which the form must be completed, signed and returned. Once you return the signed form to the Registrar’s Office, you must go into Warrior Web and confirm that you are no longer enrolled. If you still show as enrolled, FOLLOW-UP with the Registrar’s Office immediately. You are to attend class until the procedure...
is complete to avoid penalty for absence. Should you miss the drop deadline or fail to follow the procedure, you will receive an F in the course, which may affect your financial aid and/or VA educational benefits.

Academic Integrity.
Texas A&M University -Central Texas values the integrity of the academic enterprise and strives for the highest standards of academic conduct. A&M-Central Texas expects its students, faculty, and staff to support the adherence to high standards of personal and scholarly conduct to preserve the honor and integrity of the creative community. Academic integrity is defined as a commitment to honesty, trust, fairness, respect, and responsibility. Any deviation by students from this expectation may result in a failing grade for the assignment and potentially a failing grade for the course. Academic misconduct is any act that improperly affects a true and honest evaluation of a student’s academic performance and includes, but is not limited to, cheating on an examination or other academic work, plagiarism and improper citation of sources, using another student’s work, collusion, and the abuse of resource materials. All academic misconduct concerns will be reported to the university’s Office of Student Conduct. Ignorance of the university’s standards and expectations is never an excuse to act with a lack of integrity. When in doubt on collaboration, citation, or any issue, please contact your instructor before taking a course of action.

Academic Accommodations.
At Texas A&M University-Central Texas, we value an inclusive learning environment where every student has an equal chance to succeed and has the right to a barrier-free education. The Office of Access and Inclusion is responsible for ensuring that students with a disability receive equal access to the university’s programs, services and activities. If you believe you have a disability requiring reasonable accommodations please contact the Office of Access and Inclusion at (254) 501-5831. Any information you provide is private and confidential and will be treated as such.

For more information please visit our Access & Inclusion web page [https://www.tamuct.edu/student-affairs/access-inclusion.html].

Important information for Pregnant and/or Parenting Students.
Texas A&M University-Central Texas supports students who are pregnant and/or parenting. In accordance with requirements of Title IX and related guidance from US Department of Education’s Office of Civil Rights, the Dean of Student Affairs’ Office can assist students who are pregnant and/or parenting in seeking accommodations related to pregnancy and/or parenting. Students should seek out assistance as early in the pregnancy as possible. For more information, please visit the Student Affairs web page [https://www.tamuct.edu/student-affairs/index.html]. Students may also contact the institution’s Title IX Coordinator. If you would like to read more about these requirements and guidelines online, please visit the website [http://www2.ed.gov/about/offices/list/ocr/docs/pregnancy.pdf].
Title IX of the Education Amendments Act of 1972 prohibits discrimination on the basis of sex and gender—including pregnancy, parenting, and all related conditions. A&M-Central Texas is able to provide flexible and individualized reasonable accommodation to pregnant and parenting students. All pregnant and parenting students should contact the Associate Dean in the Division of Student Affairs at (254) 501-5909 to seek out assistance. Students may also contact the University’s Title IX Coordinator.

Tutoring.
Tutoring is available to all A&M-Central Texas students, both on-campus and online. Subjects tutored on campus include Accounting, Advanced Math, Biology, Finance, Statistics, Mathematics, and Study Skills. Tutors are available at the Tutoring Center in Warrior Hall, Suite 111.

If you have a question regarding tutor schedules, need to schedule a tutoring session, are interested in becoming a tutor, or have any other question, contact Academic Support Programs at (254) 519-5796, or by emailing Dr. DeEadra Albert-Green at deeadra.albertgreen@tamuct.edu.

Chat live with a tutor 24/7 for almost any subject from on your computer! Tutor.com is an online tutoring platform that enables A&M-Central Texas students to log in and receive FREE online tutoring and writing support. This tool provides tutoring in over 40 subject areas. Access Tutor.com through Canvas.

University Writing Center.
Located in Warrior Hall 416, the University Writing Center (UWC) at Texas A&M University–Central Texas (TAMUCT) is a free workspace open to all TAMUCT students from 10:00 a.m.-5:00 p.m. Monday thru Thursday with satellite hours in the University Library Monday thru Thursday from 6:00-9:00 p.m. This semester, the UWC is also offering online only hours from 12:00-3:00 p.m. on Saturdays.

Students may arrange a one-on-one session with a trained and experienced writing tutor by visiting the UWC during normal operating hours (both half-hour and hour sessions are available) or by making an appointment via WCONline at [https://tamuct.mywconline.com/]. In addition, you can email Dr. Bruce Bowles Jr. at bruce.bowles@tamuct.edu for any assistance needed with scheduling.

Tutors are prepared to help writers of all levels and abilities at any stage of the writing process. While tutors will not write, edit, or grade papers, they will assist students in developing more effective composing practices. By providing a practice audience for students’ ideas and writing, our tutors highlight the ways in which they read and interpret students’ texts, offering guidance and support throughout the various stages of the writing process. In addition, students may work independently in the UWC by checking out a laptop that runs the Microsoft Office suite and connects to WIFI, or by consulting our resources on writing, including all of the
relevant style guides. Whether you need help brainstorming ideas, organizing an essay, proofreading, understanding proper citation practices, or just want a quiet place to work, the UWC is here to help!

If you have any questions about the UWC, please do not hesitate to contact Dr. Bruce Bowles Jr. at bruce.bowles@tamuct.edu.

University Library.
The University Library provides many services in support of research across campus and at a distance. We offer over 200 electronic databases containing approximately 250,000 eBooks and 82,000 journals, in addition to the 85,000 items in our print collection, which can be mailed to students who live more than 50 miles from campus. Research guides for each subject taught at A&M-Central Texas are available through our website to help students navigate these resources. On campus, the library offers technology including cameras, laptops, microphones, webcams, and digital sound recorders.

Research assistance from a librarian is also available 24 hours a day through our online chat service, and at the reference desk when the library is open. Research sessions can be scheduled for more comprehensive assistance, and may take place on Skype or in-person at the library. Assistance may cover many topics, including how to find articles in peer-reviewed journals, how to cite resources, and how to piece together research for written assignments.

Our 27,000-square-foot facility on the A&M-Central Texas main campus includes student lounges, private study rooms, group work spaces, computer labs, family areas suitable for all ages, and many other features. Services such as interlibrary loan, TexShare, binding, and laminating are available. The library frequently offers workshops, tours, readings, and other events. For more information, please visit our [Library website](http://tamuct.libguides.com/index).

OPTIONAL POLICY STATEMENTS:
A Note about Sexual Violence at A&M-Central Texas
Sexual violence is a serious safety, social justice, and public health issue. The university offers support for anyone struggling with these issues. University faculty are mandated reporters, so if someone discloses that they were sexually assaulted (or a victim of Domestic/Dating Violence or Stalking) while a student at TAMUCT, faculty members are required to inform the Title IX Office. If you want to discuss any of these issues confidentially, you can do so through Student Counseling (254-501-5955) located on the second floor of Warrior Hall (207L).

Sexual violence can occur on our campus because predators often feel emboldened, and victims often feel silenced or shamed. It is incumbent on ALL of us to find ways to actively create environments that tell predators we don’t agree with their behaviors and tell survivors we will support them. Your actions matter. Don’t be a bystander; be an agent of change. For additional information on campus policy and resources visit the [Title IX webpage](http://tamuct.libguides.com/index).
[https://www.tamuct.edu/departments/compliance/titleix.php].

INSTRUCTOR POLICIES.
The deadlines are clearly outlined in the weekly schedule. Please complete assignments on time. No extensions will be granted.

Copyright Notice.
Students should assume that all course material is copyrighted by the respective author(s). Reproduction of course material is prohibited without consent by the author and/or course instructor. Violation of copyright is against the law and Texas A&M University-Central Texas’ Code of Academic Honesty. All alleged violations will be reported to the Office of Student Conduct.

Copyright. *(YEAR)* by *(FACULTY NAME)* at Texas A&M University-Central Texas, *(FACULTY COLLEGE)*; 1001 Leadership Place, Killeen, TX 76549; 254-(*FACULTY COLLEGE PHONE*); Fax 254-(*FACULTY COLLEGE FAX*); *(FACULTY EMAIL)*